CHEMICAL MODIFICATION OF ERYTHROMYCINS IV. SYNTHESIS AND BIOLOGICAL PROPERTIES OF 6-0-METHYLERYTHROMYCIN B

Shigeo Morimoto, Takashi Adachi, Yoko Misawa, Takatoshi Nagate, Yoshiaki Watanabe and Sadafumi Omura

Research Center, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Ohmiya-shi, Saitama 330, Japan

(Received for publication October 7, 1989)

6-O-Methylerythromycin B has been synthesized from erythromycin B via regioselective methylation of the 6-hydroxyl group in 71% overall yield. This compound shows *in vitro* antibacterial activity comparable to erythromycins A and B and exhibits superior *in vivo* activity with improved pharmacokinetic properties.

In the previous paper we have described the synthesis and the antibacterial activity of O-alkyl derivatives of erythromycin A (1, EM-A)^{1, 2)}. Among them, 6-O-methylerythromycin A (2, clarithromycin, TE-031) showed more potent antibacterial activity than 1 and superior pharmacokinetic properties. Erythromycin B (3, EM-B, 12-deoxyerythromycin A), a biosynthetic precursor of 1, is produced as a minor product by *Streptomyces erythraeus*³⁾. We were interested in the synthesis and the biological properties of

6-O-methylerythromycin B (4). Methylation of 2'-O,3'-N-bis(benzyloxycarbonyl)-N-demethylerythromycin B (8), derived from 3, afforded the 6-O-methylated compound (9) predominantly, whereas methylation of the corresponding EM-A derivative (13) afforded the 11-O-methylated compound as the major and the 6-O-methylated compound as the minor product.

This paper describes the synthesis and the biological properties of 6-O-methylerythromycin B and its related compounds.

Chemistry

Reaction of EM-B (3) with benzyl chloroformate and NaHCO₃ afforded 2'-O,3'-N-bis(benzyloxycarbonyl)-N-demethylerythromycin B (8) in 88% yield⁴⁾. Methylation of 8 with methyl iodide (MeI, 2.5 equiv)/KOH powder (1.5 equiv) in dimethyl sulfoxide (DMSO) - 1,2-dimethoxyethane (1 : 1) afforded 9 (87%), the 11-O-methylated compound (10, 6%) and the 6,4"-di-O-methylated compound (11, 4%). Methylation of 8 with MeI (10 eq)/NaH

Compound	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆
1	Н	Н	Н	ОН	CH ₃	Н
2	CH_3	н	н	OH	CH ₃	Η
3	н	Н	Н	Н	CH ₃	Н
4	CH_3	Н	н	Н	CH3	Н
5	н	н	CH_3	н	CH_3	H
6	CH_3	CH_3	н	н	CH_3	Н
7	CH_3	CH_3	CH_3	Н	CH ₃	Н
8	н	н	Н	н	Z	Ζ
9	CH_3	н	н	н	Z	Ζ
10	Н	н	CH_3	Н	Z	Ζ
11	CH_3	CH_3	Н	н	Z	Ζ
12	CH_3	CH_3	CH_3	Н	Z	Z
13	Н	Н	H	OH	Z	Ζ

 $Z = COOCH_2C_6H_5.$

					(
	3		4		Desition	3		4	
Position	1H	¹³ C	1H	¹³ C	FOSILION -	, ¹ H	¹³ C	¹ H	¹³ C
1		176.1		176.1	20 (10-CH ₃)	0.99	9.2	0.97	9.9
2	2.90	44.8	2.94	44.9	21 (12-CH ₃)	0.86	9.1	0.84	9.1
3	4.04	80.2	3.78	78.9	6-OCH ₃			3.10	50.9
4	2.10	39.3	2.04	38.7	1'	4.42	102.7	4.46	102.7
5	3.57	83.5	3.71	80.6	2'	3.22	71.1	3.19	71.1
6		75.1		78.7	3'	2.46	65.6	2.41	65.6
7	1.64/1.99	38.0	nd/1.90	38.7	4'	1.13/1.65	28.6	nd/nd	28.6
8	2.74	44.8	2.60	45.5	5'	3.50	68.7	3.48	68.7
9		219.6		219.7	6' (5'-CH ₃)	1.22	21.5	1.23	21.5
10	2.98	38.9	2.92	37.8	3'-N(CH ₃) ₂	2.29	40.3	2.28	40.3
11	3.82	69.3	3.73	69.5	1"	4.90	96.2	4.94	96.2
12	1.65	39.8	nd	40.3	2''	1.58/2.38	35.0	1.60/2.37	35.0
13	5.35	74.9	5.39	74.8	3″		72.7		72.7
14	1.47/1.67	25.5	1.46/1.72	25.7	4″	3.01	78.0	3.03	78.0
15 (14-CH ₃)	0.88	10.3	0.88	10.5	5″	4.04	65.8	4.02	65.8
16 (2-CH ₃)	1.19	15.5	1.20	16.0	6" (5"-CH ₃)	1.29	18.4	1.31	18.4
17 (4-CH ₁)	1.14	9.1	1.12	9.1	7" (3"-CH ₃)	1.24	21.5	1.26	21.5
18 (6-CH ₃)	1.47	27.2	1.41	20.0	3"-OCH3	3.22	49.5	3.33	49.5
19 (8-CH ₃)	1.14	18.4	1.10	18.8	5				

Table 1. ¹H and ¹³C NMR chemical shifts $(\delta)^a$ of 3 and 4.

^a δ values in ppm from (CH₃)₄ Si, measured in CDCl₃ at 400 MHz for ¹H and 100.4 MHz for ¹³C; as determined from a ¹H-¹H homonuclear and ¹H-¹³C heteronuclear 2D shift correlated experiments.
nd: Not determined because of the complexities of the spectra.

dispersion (2 eq) in N,N-dimethylformamide (DMF) afforded 9 (21%), 11 (51%) and the 6,11,4"-tri-O-methylated compound (12, 10%). When large amounts of NaH dispersion were used in DMF, 12 was obtained in 93% yield.

Catalytic hydrogenation of 9, 10, 11 and 12 using Pd-Black in EtOH containing 2.5 M acetate buffer (pH 5.0) and reductive *N*-methylation with formaldehyde afforded 4 (93%), 11-O-methylerythromycin B (5, 61%), 6,4"-di-O-methylerythromycin B (6, 69%) and 6,11,4"-tri-O-methylerythromycin B (7, 48%), respectively.

The molecular formula of 4 was determined as $C_{38}H_{69}NO_{12}$ from elemental analysis, FAB-MS and ¹³C NMR spectra, indicating the introduction of a methyl group to 3. The ¹H and ¹³C NMR spectra of 4 were directly compared with those of 3 (Table 1). The ¹H NMR spectrum of 4 is similar to that of 3 except for the new *O*-methyl signal at 3.10 ppm. In the ¹³C NMR spectrum, C-6 (78.7 ppm) of 4 is 3.6 ppm further downfield than that of 3. Upfield shifts of C-5 (-2.9 ppm) and C-18 (-7.2 ppm) were also observed. The spectral data of 4 are consistent with the published substituent effect in 2². The structure of 4 is therefore determined to be 6-*O*-methylerythromycin B.

The molecular formulae of **6** and **7** were determined as $C_{39}H_{71}NO_{12}$ and $C_{40}H_{73}NO_{12}$, respectively, from FAB-MS, ¹³C NMR spectra and elemental analyses, indicating the introduction of two and three methyl groups to **3**, respectively. Compound **6** exhibits the new *O*-methyl signal at 3.54 ppm in addition to the 6-*O*-methyl signal at 3.10 ppm. The ¹H NMR spectrum of **7** showed one more *O*-methyl signal at 3.44 ppm besides two *O*-methyl signals at 3.54 and 3.16 ppm which were similar to those observed in **6**. In the ¹³C NMR spectrum of **6**, a typical downfield shift of C-4" (+11.0 ppm) was observed together with the new *O*-methyl signal at 62.1 ppm compared to **3**. Compound **7** showed downfield shifts of C-11 (+9.4 ppm) and C-4" (+11.1 ppm) together with the *O*-methyl signals at 60.1 and 62.2 ppm compared to

3. The structures of 6 and 7 were therefore determined to be 6,4"-di-O-methyl- and 6,11,4"-tri-O-methylerythromycins B, respectively.

The molecular formula of 5 was determined as $C_{38}H_{69}NO_{12}$ from elemental analysis, FAB-MS and ¹³C NMR spectra, indicating the introduction of a methyl group to 3, which was the same as that of 4. In the ¹H NMR spectrum of 5, the *O*-methyl signal was newly observed at 3.28 ppm. In the ¹³C NMR spectrum, the *O*-methyl signal (59.9 ppm) and C-11 (79.3 ppm) in 5 were similar to the 11-*O*-methyl signal (60.1 ppm) and C-11 (78.7 ppm) in 7, respectively. The structure of 5 was therefore determined to be 11-*O*-methylerythromycin B.

Selectivity for methylation of EM-B derivative 8 is considerably different from that of EM-A derivative 13. Methylation of 13 with MeI/KOH in DMSO-1,2-dimethoxyethane afforded the 11-O-methylated compound as the major product, some 6-O-methylated compound, and small amounts of 6,11- and 6,12-di-O-methylated compounds²). On the other hand, the 6-hydroxyl group in 8 is much more reactive than the 11-hydroxyl and the 4''-hydroxyl groups. Compound 8 is different from 13 only by the lack of the 12-hydroxyl group. The above significant difference for methylation is caused by the neighboring group effect of the 12-hydroxyl group. We are studying the reason for the selectivities by theoretical calculation using molecular mechanics (MM2') and molecular orbital method (MNDO).

Biological Property

Table 2 shows the *in vitro* antibacterial activities of 6-O-methylerythromycins B (4, 6 and 7) and 11-O-methylerythromycin B (5) compared to those of 1, 2 and 3 against a variety of standard strains. 6-O-Methylerythromycin B (4) is equal to or 2-fold more active than 3, and equal to or 2-fold less active than 2. 11-O-Methylerythromycin B (5) is equal to or 2-fold less active than 4. Di- and tri-O-methylerythromycins B (6 and 7) are much less active than 4. The *in vivo* activities of 1, 2, 3 and 4 are listed in Table 3. Compound 4 is 2-fold more effective than 1 and 3, but less effective than 2 against experimental infections by *Staphylococcus aureus* Smith 4. The hydroxyl group at C-12 plays an important role for *in vivo* antibacterial activity.

Pharmacokinetic properties of 1, 2, 3 and 4 were compared after oral administration to rats in Table

	Table 2	2. In vino a	intibacteria	activities.			
Strain			N	MICs (µg/ml))		
Stram	1	2	3	4	5	6	7
Staphylococcus aureus 209P-JC	0.10	0.10	0.20	0.10	0.20	1.56	1.56
S. aureus BB	0.10	0.10	0.20	0.39	0.39	3.13	3.13
S. aureus Smith 4	0.20	0.10	0.20	0.20	0.39	3.13	3.13
S. aureus Terajima	0.10	0,10	0.20	0.20	0.78	1.56	3.13
S. aureus J-109	>100	>100	>100	>100	>100	>100	>100
S. aureus B1	>100	>100	>100	>100	>100	>100	>100
S. epidermidis IID 866	0.20	0.10	0.20	0.10	0.20	1.56	1.56
S. epidermidis sp-al-1	0.39	0.20	0.39	0.20	0.20	1.56	3.13
Bacillus subtilis ATCC 6633	0.10	0.05	0.10	0.10	0.10	0.78	1.56
Micrococcus luteus ATCC 9341	0.025	0.012	0.05	0.025	0.025	0.10	0.10
Escherichia coli NIHJ JC-2	100	100	>100	>100	>100	>100	>100
E. coli K-12	25	12.5	25	25	25	>100	>100
Klebsiella pneumoniae IFO 3317	100	100	>100	>100	>100	>100	>100

Table 2. In vitro antibacterial activities

Inoculum size: 10⁶ cfu/ml.

Medium: Sensitivity Test Agar (Eiken).

Table 3. *In vivo* antibacterial activities of 1, 2, 3 and 4 in mouse protection test.

	1	2	3	4
ED ₅₀ (mg/mouse)	0.666 0.652 ²⁾	0.086 ²⁾	0.661	0.358

Compounds 1, 2, 3 and 4 were administered orally 1 hour after infection of *Staphylococcus aureus* Smith 4.

4. AUC's of 4 and 2 are significantly higher than those of 3 and 1, which could explain the above excellent *in vivo* activity.

Compound	Dasa	Plasm	AUC	
	(mg/kg)	Cmax (µg/ml)	T _{1/2} (hours)	(μg·hour/ ml)
1	50	0.64	2.81	2.37
2	50	2.40	2.47	11.17
3	50	1.20	1.78	4.03
4	50	1.70	1.15	15.2

Conclusion

EM-A (1) has been one of the most useful macrolide antibiotics for the past three decades^{5,6)}. We have synthesized clarithromycin (2), which is expected to supersede EM-A as a new antibiotic. This compound exhibits excellent antibacterial activity and preferable pharmacokinetic properties, which were brought by 6-O-methylation²⁾.

6-O-Methylerythromycin B (4) was synthesized from EM-B (3) in 71% overall yield. Methylation of the 6-hydroxyl group in 8 is considerably regioselective, which could not be presumed from methylation of EM-A derivative (13). Methylation of the 6-hydroxyl group does not affect the *in vitro* antibacterial activity significantly, but improves the *in vivo* activity due to the preferable pharmacokinetic properties. 6-O-Methylerythromycin B (4) is expected to be a promising antibiotic as well as clarithromycin (2).

Experimental

MP's are uncorrected. IR and UV spectra were recorded with a Perkin-Elmer 1760 FT-IR spectrometer and a Shimadzu UV 240 spectrophotometer, respectively. Optical rotations were measured on a Jasco DIP-360 digital polarimeter. NMR spectra were recorded with a Jeol JNM-GX 400 spectrometer. Mass spectra were measured on a Jeol JMS-SX102 spectrometer equipped with a Jeol JMA-DA6000 data system using FAB techniques.

2'-O,3'-N-Bis(benzyloxycarbonyl)-N-demethylerythromycin B (8)

To a vigorously stirred suspension of NaHCO₃ (270 g) in carbobenzoxy chloride (500 g) was added **3** (135 g) in small portions at $40 \sim 50^{\circ}$ C for 1 hour. The mixture was stirred for 1.5 hours at the same temperature, and CH₂Cl₂ (350 ml) was added. The reaction mixture was filtered, and the solid was washed with CH₂Cl₂ (500 ml). The filtrate was evaporated under reduced pressure. Crystallization of the residue from ethyl ether - petroleum ether (100 ml/4.5 liters) afforded **8** (161.8 g, 88%) as colorless needles, mp 212~213.5°C; [α]_D²⁵ - 112.7° (*c* 0.5, EtOH); UV λ ^{EtOH}_{max} nm (ϵ) 214 (503.8), 252 (298.1), 258 (273.3), 263 (326.7), 267 (sh), 289 (32.9); IR (KBr) cm⁻¹ 3446, 1751, 1727, 683; FAB-MS *m*/*z* 972 (M+H); *Anal* Calcd for C₅₂H₇₇NO₁₆: C 64.24, H 7.98, N 1.44. Found: C 63.96, H 8.03, N 1.35.

2'-O,3'-N-Bis(benzyloxycarbonyl)-N-demethyl-6-O-methylerythromycin B (9) and 2'-O,3'-N-Bis-(benzyloxycarbonyl)-N-demethyl-11-O-methylerythromycin B (10)

To a stirred solution of 8 (24.3 g) and MeI (3.9 ml, 2.5 equiv) in DMSO-1,2-dimethoxyethane (1:1, 500 ml) was added 85% KOH powder (2.47 g, 1.5 equiv) at $0 \sim 5^{\circ}$ C in one portion. After the reaction mixture was stirred for 2.5 hours, triethyl amine (10 ml) was added. The above mixture was poured into 5% NaHCO₃ soln, and extracted with EtOAc. The organic layer was washed with satd NaCl soln, dried over MgSO₄ and evaporated under reduced pressure. The crude product was chromatographed on a silica gel column using EtOAc-*n*-hexane (1:2) to afford 9 (21.4 g, 87%), 10 (1.6 g, 6%) and 11 (1.0 g, 4%). Crystallization of 9 from CHCl₃ - petroleum ether afforded colorless prisms, mp 102~106°C; $[\alpha]_D^{26.5} - 114.0^{\circ}$

Table 4. Pharmacokinetic properties of 1, 2, 3 and 4 by po administration in rats.

(c 0.5, EtOH); UV λ_{max}^{EtOH} nm (ε) 213 (488.8), 252 (294.7), 258 (373.8), 263 (328.4), 267 (sh), 289 (31.8); IR (KBr) cm⁻¹ 3515, 1751, 1730, 1704; FAB-MS *m/z* 986 (M+H); *Anal* Calcd for C₅₃H₇₉NO₁₆: C 64.55, H 8.07, N 1.42. Found: C 63.93, H 8.13, N 1.33.

Crystallization of **10** from EtOAc -*n*-hexane afforded colorless prisms, mp $129 \sim 133^{\circ}$ C; $[\alpha]_{D}^{2.5} - 118.3^{\circ}$ (*c* 0.5, EtOH); UV λ_{max}^{EtOH} nm (*e*) 214 (510.3), 252 (301.4), 258 (380.3), 263 (331.0), 267 (sh), 289 (31.8); IR (KBr) cm⁻¹ 3523, 1752, 1729, 1703; FAB-MS *m/z* 986 (M+H); *Anal* Calcd for C₅₃H₇₉NO₁₆: C 64.55, H 8.07, N 1.42. Found: C 64.07, H 8.12, N 1.33.

2'-O,3'-N-Bis(benzyloxycarbonyl)-N-demethyl-6,4"-di-O-methylerythromycin B (11)

To a stirred solution of **8** (0.80 g) and MeI (0.8 ml, 16 equiv) in DMF (6.4 ml) was added 60% NaH dispersion (64 mg, 2.0 equiv) at $0 \sim 5^{\circ}$ C in one portion, and the reaction mixture was stirred for 1.5 hours. Purification as described above afforded **12** (80 mg, 10%), **11** (420 mg, 51%), and **9** (170 mg, 21%). Compound **11** was obtained as a colorless glass, mp 94~98°C; $[\alpha]_{D}^{27}$ -108.4° (*c* 0.5, EtOH); UV λ_{max}^{EtOH} nm (ϵ) 219 (603.7), 252 (381.5), 258 (438.7), 263 (381.3), 267 (sh), 289 (sh); IR (CHCl₃) cm⁻¹ 3509, 1745, 1723, 1693; FAB-MS *m*/*z* 1,000 (M + H); *Anal* Calcd for C₅₄H₈₁NO₁₆: C 64.84, H 8.16, N 1.40. Found: C 64.17, H 8.10, N 1.30.

2'-O,3'-N-Bis(benzyloxycarbonyl)-N-demethyl-6,11,4"-tri-O-methylerythromycin B (12)

To a stirred solution of **8** (1.0 g) and MeI (1 ml, 16 equiv) in DMF (8 ml) was added 60% NaH dispersion (192 mg, 4.9 equiv) at $0 \sim 5^{\circ}$ C, and the reaction mixture was stirred for 0.5 hour. Similar treatment and purification as described above afforded **12** (972 mg, 93%). Crystallization of **12** from ethyl ether - petroleum ether afforded colorless needles, mp 187~189°C; $[\alpha]_{D}^{25}$ -129.6° (c 0.5, EtOH); UV λ_{max}^{EtOH} nm (ε) 211 (527.0), 252 (303.3), 258 (386.4), 263 (335.3), 267 (sh), 289 (28.4); IR(KBr) cm⁻¹ 1750, 1726, 1708; FAB-MS *m*/*z* 1,014 (M+H); *Anal* Calcd for C₅₅H₈₃NO₁₆: C 65.13, H 8.25, N 1.38. Found: C 64.87, H 8.34, N 1.32.

6-O-Methylerythromycin B (4)

To a solution of 9 (21.42 g) in 2.5 M acetate buffer (pH 5.0, 24 ml) and EtOH (200 ml) was added Pd-black (1 g) and the mixture was stirred under hydrogen atmosphere for 3 hours at room temperature. After the complete removal of the benzyloxycarbonyl groups, 37% formaldehyde soln (40 ml) was added and hydrogenation was continued for further 3 hours. The catalyst was filtered off, and ice water (1 liter) was added to the filtrate. The resulting mixture was adjusted to pH 10~10.5 with 2 N NaOH soln under stirring to give the crude crystals. The crystals, collected by filtration, were washed with 2% NaHCO₃ soln and water and dried. Crystallization from CHCl₃-petroleum ether afforded 4 (14.84 g, 93%). Recrystallization from EtOH gave needles for analyses, mp 219~220°C; $[\alpha]_D^{26.5}$ -104.0° (c 0.5, EtOH); UV $\lambda_{max}^{\text{EtOH}}$ nm (ϵ) 217 (381.2), 289 (30.9); IR (KBr) cm⁻¹ 3468, 1729, 1692; FAB-MS m/z 732 (M+H); Anal Calcd for C₃₈H₆₉NO₁₂: C 62.36, H 9.50, N 1.91. Found: C 62.70, H 9.40, N 1.74. ¹H and ¹³C NMR data are listed in Table 1.

11-O-Methylerythromycin B (5)

By the method described above, **10** (200 mg) was hydrogenated and *N*-methylated. The reaction mixture was filtered, and the filtrate was poured into NaHCO₃ soln and extracted with EtOAc. The organic layer was washed with satd NaCl soln, dried over MgSO₄ and evaporated to give the crude product. Column chromatography of the crude product on silica gel with CHCl₃ - MeOH - conc NH₄OH (20:1:0.1) afforded **5** (91 mg, 61%) as crystalline solid, mp 178 ~ 182°C; $[\alpha]_D^{27} - 103.2^\circ$ (*c* 0.25, EtOH); UV λ_{max}^{EtOH} nm (*c*) 213 (726.4), 285 (47.7); IR (CHCl₃) cm⁻¹ 3452, 1722; FAB-MS *m*/z 732 (M+H); *Anal* Calcd for C₃₈H₆₉NO₁₂: C 62.36, H 9.50, N 1.91. Found: C 62.09, H 9.32, N 1.75. ¹H NMR (400 MHz, CDCl₃) δ 2.28 (6H, s, 3'-N(CH₃)₂), 2.99 (1H, dd, 4"-H), 3.28 (3H, s, 11-OCH₃), 3.31 (3H, s, 3"-OCH₃), 3.99 (1H, dd, 11-H); ¹³C NMR (100.4 MHz, CDCl₃) δ 40.4 (3'-N (CH₃)₂), 49.4 (3"-OCH₃), 59.9 (11-OCH₃), 79.3 (C-11), 74.7 (C-6), 77.9 (C-4").

6,4"-Di-O-methylerythromycin B (6)

By the method described above, 11 (600 mg) was hydrogenated and N-methylated. Column

VOL. XLIII NO. 5

THE JOURNAL OF ANTIBIOTICS

chromatography of the crude product on silica gel with CHCl₃ - MeOH (10:1) and crystallization from EtOH afforded **6** (327 mg, 69%) as needles which contained 1 mol of EtOH, mp 200 ~ 201°C; $[\alpha]_D^{26.5} - 95.8^{\circ}$ (*c* 0.47, EtOH); UV λ_{max}^{EtOH} nm (ϵ) 216 (397.0), 289 (34.2); IR (KBr) cm⁻¹ 3466, 1728, 1693; FAB-MS *m/z* 746 (M+H); *Anal* Calcd for C₃₉H₇₁NO₁₂·C₂H₅OH: C 62.17, H 9.80, N 1.77. Found: C 61.82, H 9.73, N 1.74. ¹H NMR (400 MHz, CDCl₃) δ 2.28 (6H, s, 3'-N(CH₃)₂), 2.66 (1H, d, 4"-H), 3.10 (3H, s, 6-OCH₃), 3.33 (3H, s, 3"-OCH₃), 3.54 (3H, s, 4"-OCH₃), 3.73 (1H, dd, 11-H); ¹³C NMR (100.4 MHz, CDCl₃) δ 40.2 (N(CH₃)₂), 49.7 (3"-OCH₃), 50.9 (6-OCH₃), 62.1 (4"-OCH₃), 69.5 (C-11), 78.7 (C-6), 89.0 (C-4").

6,11,4"-Tri-O-methylerythromycin B (7)

Similarly **12** (830 mg) was hydrogenated and *N*-methylated. The crude product was chromatographed on silica gel column with CHCl₃ - MeOH (20:1) and crystallized from EtOH to afford **7** (316 mg, 48%), as needles which contained 1 mol of EtOH, mp 228 ~ 230°C; IR (KBr) cm⁻¹ 3455, 1726, 1715, 1696; $[\alpha]_D^{26.5}$ - 108.4° (*c* 0.47, EtOH); FAB-MS *m*/*z* 760 (M + H); UV λ_{max}^{EtOH} nm (*c*) 217 (433.0), 287 (40.0); *Anal* Calcd for C₄₀H₇₃NO₁₂ · C₂H₅OH: C 62.58, H 9.88, N 1.74. Found: C 62.42, H 9.65, N 1.70; ¹H NMR (400 MHz, CDCl₃) δ 2.28 (6H, s, 3'-N (CH₃)₂), 2.66 (1H, d, 4"-H), 3.16 (3H, s, 6-OCH₃), 3.33 (3H, s, 3"-OCH₃), 3.44 (3H, s, 11-OCH₃), 3.54 (3H, s, 4"-OCH₃), 3.51 (1H, dd, 11-H); ¹³C NMR (100.4 MHz, CDCl₃) δ 40.3 (3'-N(CH₃)₂), 49.7 (3"-OCH₃), 50.7 (6-OCH₃), 60.1 (11-OCH₃), 62.2 (4"-OCH₃), 78.7 (C-11), 79.3 (C-6), 89.1 (C-4").

Acknowledgments

We thank Mr. H. KONDOH for technical NMR assistance, and Mr. T. ONO for antibiotic susceptibility test.

References

- MORIMOTO, S.; Y. TAKAHASHI, Y. WATANABE & S. OMURA: Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J. Antibiotics 37: 187~189, 1984
- MORIMOTO, S.; Y. MISAWA, T. ADACHI, T. NAGATE, Y. WATANABE & S. OMURA: Chemical modification of erythromycins. II. Synthesis and antibacterial activity of O-alkyl derivatives of erythromycin A. J. Antibiotics 43: 286~294, 1990
- PETTINGA, C. W.; W. M. STARK & F. R. VAN ABEELE: The isolation of a second crystalline antibiotic from Streptomyces erythreus. J. Am. Chem. Soc. 76: 569~571, 1954
- FLYNN, E. H.; H. W. MURPHY & R. E. MCMAHON: Erythromycin. II. Des-N-methylerythromycin and N-methyl-C¹⁴-erythromycin. J. Am. Chem. Soc. 77: 3104~3106, 1955
- WASHINGTON, J. A., II & W. R. WILSON: Erythromycin: A microbial and clinical perspective after 30 years of clinical use (First of two parts). Mayo Clin. Proc. 60: 189~203, 1985
- WASHINGTON, J. A., II & W. R. WILSON: Erythromycin: A microbial and clinical perspective after 30 years of clinical use (Second of two parts). Mayo Clin. Proc. 60: 271 ~ 278, 1985